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Summary genital cataracts, mental retardation, and Fanconi syn-
drome of the proximal renal tubules (Lowe et al. 1952).

The oculocerebrorenal syndrome of Lowe (OCRL) is a
The OCRL1 gene has been cloned (Attree et al. 1992)

multisystem disorder characterized by congenital cata-
and encodes ocrl1, the protein product of the OCRL1

racts, mental retardation, and renal Fanconi syndrome.
gene, a 105-kD phosphatidylinositol(4,5) bisphosphate

The OCRL1 gene, which, when mutated, is responsible
(PtdIns[4,5]P2) 5-phosphatase that is deficient in OCRL

for OCRL, encodes a 105-kD Golgi protein with phos-
patients (Suchy et al. 1995; Zhang et al. 1995).

phatidylinositol (4,5)bisphosphate (PtdIn[4,5]P2) 5-
We previously reported mutations in three unrelated

phosphatase activity. We have examined the OCRL1
OCRL patients, two of whom had the same nonsense

gene in 12 independent patients with OCRL and have
mutation whereas the third demonstrated an exon-skip-

found 11 different mutations. Six were nonsense muta-
ping mutation leading to frameshift and premature ter-

tions, and one a deletion of one or two nucleotides that
mination (Leahey et al. 1993). However, the majority

leads to frameshift and premature termination. In one,
of OCRL patients have no detectable OCRL1 mRNA

a 1.2-kb genomic deletion of exon 14 was identified. In
(Attree et al. 1992), and therefore reverse transcriptase–

four others, missense mutations or the deletion of a sin-
PCR (RT-PCR) generally is not suitable for screening

gle codon were found to involve amino acid residues
for all OCRL1 mutations. To search for mutations in

known to be highly conserved among proteins with
genomic DNA, the OCRL1 intron/exon structure was

PtdIns(4,5)P2 5-phosphatase activity. All patients had
mapped, 24 exons were identified, and primers flanking

markedly reduced PtdIns(4,5)P2 5-phosphatase activity
each translated exon were designed to amplify each exon

in their fibroblasts, whereas the ocrl1 protein was detect-
from genomic DNA (Nussbaum et al. 1997). Nine more

able by immunoblotting in some patients with either
mutations were identified, eight by analysis of exons

missense mutations or a codon deletion but was not
amplified from genomic DNA and one by Southern blot

detectable in those with premature termination muta-
analysis. We also have identified three additional muta-

tions. These results confirm and extend our previous
tions by RT-PCR and sequencing in patients in whom

observation that the OCRL phenotype results from loss
OCRL1 mRNA is detectable by northern blotting.

of function of the ocrl1 protein and that mutations are
generally heterogeneous. Missense mutations that abol-

Material and Methodsish enzyme activity but not expression of the protein will
be useful for studying structure-function relationships in Patient Samples
PtdIns(4,5)P2 5-phosphatases. Cultured lymphoblastoid or fibroblast cell lines were

obtained, with informed consent of parents or guard-
ians, from male patients carrying a clinical diagnosisIntroduction
of OCRL, based on the phenotypic triad of congenital

Lowe oculocerebrorenal syndrome (OCRL; McKusick cataracts, Fanconi syndrome of the proximal renal tu-
309000) is an X-linked disorder characterized by con- bules, and mental retardation.

PCR Methods
Received October 28, 1996; accepted for publication February 14,

The 23 coding exons of OCRL1 and their flanking1997.
Address for correspondence and reprints: Dr. Robert L. Nussbaum, intronic sequences were amplified from patient genomic

Laboratory of Genetic Disease Research, National Center for Human DNA obtained from lymphoblastoid or fibroblast cells
Genome Research, National Institutes of Health, 49 Convent Drive, as follows. Reactions were performed with 50–100 ng
MSC4472, Bethesda, MD 20892-4472. E-mail: rlnuss@nchgr.nih.gov

of BamHI-digested genomic DNA, 0.5 mM each of for-� 1997 by The American Society of Human Genetics. All rights reserved.
0002-9297/97/6006-0016$02.00 ward and reverse primers specific for each exon, 1.25 U

1384

/ 9a2a$$ju29 05-15-97 17:45:14 ajhga UC-AJHG



1385Lin et al.: Mutations in OCRL1 Gene

of Taq polymerase, 200 mmol of dNTP, 10 mM Tris Results
(pH 8.3), 50 mM KCl, 1.5 mM MgCl2 and 0.001% The diagnosis of OCRL was confirmed biochemically
gelatin in 20 ml. A 98�C soak for 30 min was followed in all 10 of the 12 patients for whom fibroblasts were
by 35 cycles of 94�C for 1 min, an annealing step for 1 available for enzyme assay. Enzyme assay in these 10
min, and 72�C for 1 min (Gene Amp PCR system 9600; patients revealed activities in the range of 0.05–1.02
Perkin Elmer). The annealing temperature for the first nmol/min/mg (table 1). Enzyme activities in this range
10 cycles was decreased sequentially by 1�C and was are all õ2 SDs from the mean { SD of the activity for
held constant for the remaining 25 cycles. Primer se- OCRL patients (0.55 { 0.29 nmol/min/mg) and are ú6
quences are available through the World Wide Web on SDs below the mean { SD for the activity of normal
the Springer-Verlag website for Human Genetics (http:// control fibroblasts (6.41 { 0.81 nmol/min/mg).
www.springer.de). Screening with SSCP of RT-PCR products or PCR

products of genomic DNA revealed aberrant migration
SSCP Analysis of fragments in 11 patients. Exons with aberrant SSCP

Each exon was amplified by use of the above PCR bands were sequenced. In one patient, an exon could
conditions, with one primer end-labeled with 32P-g-ATP. not be amplified, and genomic DNA was examined by
PCR products were denatured in loading buffer (95% Southern blot analysis for a large genomic deletion or
formamide, 10 mM EDTA, 0.025% xylene cyanol, and insertion. With this approach, 11 different mutations
0.025% bromophenol blue) at 98�C for 5 min and im- were found in 12 patients, as shown in table 1.

Four patients carried 1- or 2-bp deletions leading tomediately were cooled on ice and separated on a nonde-
frameshift and premature termination £12 codonsnaturing Hydrolink MDE gel (AT Biochem) at 4�C by
downstream. Three additional patients were found toelectrophoresis at 45 W.
have nonsense mutations that were predicted to truncate

Sequencing the ocrl1 protein prematurely during translation. West-
ern blot analysis of all six of the seven patients for whomExons of each patient were amplified as described
fibroblasts were available revealed no detectable ocrl1above. A DNA cycle sequencing kit (Promega) used the
protein.primer end-labeled with 32P-g-ATP. The sequencing pro-

Exon 14 could not be amplified in the cell line fromcedure consisted of 30 cycles of 95�C for 20 s, annealing
patient XL82-02, whereas exons 13 and 15 were ampli-at the appropriate temperature for 20 s, and 70�C exten-
fied readily. Southern blot analysis with a 402-bp cDNAsion for 40 s. Annealing temperatures varied from 45�C
containing exon 12 through part of exon 15 identifiedto 55�C. The PCR products then were separated on 6%
an Ç1.2-kb genomic deletion including exon 14. Noacrylamide gel with constant current of 75 Ws for 2–
protein was detectable by immunoblotting.3 h. Bands were visualized on x-ray film (Kodak) at

Three missense mutations and one in-frame codon070�C.
deletion were identified. Patient XL59-01 had a 3-bp
deletion in exon 12, causing an in-frame codon deletionSouthern Blot Analysis
of either T350 or T351. Patient XL78-07 showed anGenomic DNAs from patients were digested with
aberrant SSCP band derived from exon 13 after SSCP.BamHI, EcoRI, or XbaI and were separated on a 0.9%
Sequencing identified an ArG missense mutation at basegel. DNA was transferred to nylon membrane
1529 of the gene, changing a highly conserved aspartic(Schleicher & Schuell) in 10 1 SSC. The membrane was
acid at position 434 to a glycine. Patient cell linehybridized with a cDNA probe that contained exons
PHL255 had an ArG substitution at nucleotide 1748,12–15. The filter was washed once at 65�C for 10 min
which changes histidine 507 to arginine in exon 15.in 2 1 SSC and 0.1% SDS and twice in 0.2 1 SSC and
These missense mutations and the single codon deletion0.1% SDS for 10 min.
abolished PtdIns(4,5)P2 5-phosphatase activity, whereas
the ocrl1 protein, although reduced, still was detectableRT-PCR
by western blotting. Patient LS-15 had a TrC substitu-Reverse-transcription reactions and sequencing of
tion at nucleotide 1565 in exon 14, changing a con-RT-PCR products were performed as described else-
served phenylalanine 446 to serine. Fibroblasts were notwhere (Leahey et al. 1993).
available for enzyme assay or western blotting. A sche-
matic diagram summarizing the mutations in this report,PtdIns(4,5)P2 5-Phosphatase Assay
as well as two nonsense mutations reported elsewhere

Cell extracts were prepared from patient fibroblasts (Leahey et al. 1993), is shown as figure 1.
by freeze-thawing. Activity was assayed as described

Discussionelsewhere (Suchy et al. 1995). Western blotting also was
performed as described elsewhere (Olivos-Glander et al. Twelve mutations were identified in the OCRL1 gene

in OCRL patients. Three of them were found with RT-1995).
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Table 1

Location, Nucleotide Change, Amino Acid Change, Enzyme Activity, and Protein Expression in 12 Patients with OCRL

Nucleotide Change Predicted Effect Enzyme
Patient Exon Mutation Type (Base Numbera) on Translation Activityb,c Proteinc,d

XL58-01 10 1-bp deletion 1051delG Frameshift and stop .34 0
LS24-01 15 1-bp deletion 1695, 1696, or 1697delA Frameshift and stop .53 0
LS23-01 21 2-bp deletion 2535–2536, 2536–2537, or 2537–2538delGT Frameshift and stop 1.02 0
LS38-01 21 2-bp deletion 2535–2536, 2536–2537, or 2537–2538delGT Frameshift and stop .61 0
XL54-02 10 Nonsense 1060CrT Q278X NA NA
XL49-22 12 Nonsense 1339CrT Q371X .79 0
LS36-01 18 Nonsense 2164CrT R646X .24 0
XL82-02 14 Exon deletion genomic deletion . . . .60 0
XL78-07 13 Missense 1529 ArG D434G .10 1/
LS15-01 14 Missense 1564TrC F446S NA NA
PHL255 15 Missense 1748 ArG H507R .25 2/
XL59-01 12 3-bp deletion 1276–1278 or 1279–1281delACC del T350 or T351 .05 1/

a According to GenBank entry U57627.
b Data are means of duplicate assays. Mean { SD PtdIns(4,5)P2 5-phosphatase activity for normal fibroblasts is 6.41 { 0.81 nmol/min/mg

(n Å 7); and that for OCRL fibroblasts is 0.55 { 0.29 nmol/min/mg, (n Å 23).
c NA Å not available.
d Scale is from 0, for no protein detectable, to 4/, for normal protein levels.

PCR followed by sequencing, and the rest were found one, a 1.2-kb genomic deletion of exon 14 was identi-
fied. In the other four, missense mutations or the dele-by amplification of genomic DNA from each exon, fol-

lowed by SSCP and sequencing. tion of a single codon was found. Eleven of the 12 muta-
tions in this study are different, as expected in an X-Eleven independent, distinct mutations were identified

in the OCRL1 gene in these 12 OCRL patients. In seven, linked genetic lethal disorder in which new mutation is
likely to contribute a significant number of mutant al-a nonsense mutation or a deletion of one or two nucleo-

tides led to frame shift and premature termination. In leles (Haldane 1935). Surprisingly, the same mutation,

Figure 1 Schematic diagram of OCRL1 cDNA depicting the location of the various mutations found in the gene. Exons are numbered
1–23, with an alternatively spliced exon shown as 18a. Except for the 3� untranslated portion of the cDNA, exons are drawn to scale (Nussbaum
et al. 1997).
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to levels comparable to that seen in patients with com-
pletely null mutations, whereas the ocrl1 protein still
was readily detectable by western blotting. Jefferson and
Majerus (1996) used site-directed mutagenesis to target
regions, in inpp5b and ship, containing domains IV and
VI, as shown in figure 2. They identified certain con-
served amino acids that were required for substrate
binding and hydrolysis of phosphate from inositol
polyphosphate and phosphatidylinositol polyphosphate
substrates. These mutations, therefore, are in domains
that are distinct from the domains reported here as hav-
ing mutations in OCRL patients. The naturally oc-
curring mutations reported here, combined with the mu-
tations engineered by Jefferson and Majerus, provide
additional biological support for the functional impor-
tance of five of the seven highly conserved domains in

Figure 2 Seven blocks of highly conserved amino acid sequence PtdIns(4,5)P2 5-phosphatase proteins.
shared by four PtdIns(4,5)P2 5-phosphatases. Numbers indicate the The PtdIns(4,5)P2 5-phosphatase assay proves to be
amino acid residue for each protein and are derived from their Gen- an accurate tool for diagnosing OCRL. Carrier detec-
Bank entries (OCRL1, U57627; INPP5B, M74161; synaptojanin,

tion, however, is not feasible by enzyme assay, because,U45479; and SHIP, U39203). Arrows indicate locations of highly
in contrast to autosomal genes that cause metabolic dis-conserved amino acid residues that are either altered to another amino

acid or deleted in the OCRL1 gene of OCRL patients. Protein align- ease, OCRL1 is X linked and not expressed from the
ments were carried out by the MACAW Multiple Alignment Construc- inactive X chromosome (Hodgson et al. 1986; Mueller
tion and Analysis Workbench using the segment pair overlap method et al. 1991). Random X inactivation is likely to lead to
under a BLOSUM62 scoring matrix (Schuler et al. 1991; Henikoff

a broad range of enzymatic activity, depending on theand Henikoff 1993). Statistical significance was assessed under the
fraction of cells in the sample that have inactivated the Xnull hypothesis of random alignment under a search space defined as

the lengths of the actual sequences. chromosome carrying the normal OCRL1 gene. Direct
mutation detection does provide a dependable carrier
test in those families in which the mutation is known.
In this sample of 12 unrelated probands, five of thea 2-bp deletion in exon 21, did recur in two unrelated

patients. Recurrence of a nonsense mutation due to a mutations changed restriction sites, and one caused a
shift in the size of a fragment seen by Southern blot,CrT transition also was seen elsewhere in two other

unrelated patients with OCRL (Leahey et al. 1993). thereby providing a simple and convenient way to screen
the family members for carrier status at the OCRL locus.Besides ocrl1, seven highly conserved protein domains

have been described (Erneux et al. 1995; Jefferson et al. Other allele-specific tests are being developed for carrier
testing in the remaining families.1995; R. L. Nussbaum, M. Sheahan, A. Dutra, and M.

Budarf, unpublished data) among four mammalian pro-
teins with known PtdIns(4,5)P2 5-phosphatase or phos- Acknowledgments
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